Background: Endogenous carbon monoxide (CO) is one of the three products of heme degradation by heme oxygenase-1 (HO-1) and exerts novel anti-inflammatory and anti-apoptotic effects as a gaseous second messenger. The purpose of this investigation was to determine whether exogenous CO could modulate intestinal inflammation.
Methods: Acute colitis was induced with 2% DSS in male C57BL/6 mice. CO-releasing molecule-2 (CORM-2; tricarbonyldichlororuthenium(II) dimer) was intraperitoneally administered twice daily and the disease activity index (DAI) was determined. We measured tissue-associated myeloperoxidase (MPO) activity as an index of neutrophil infiltration, and the production of keratinocyte chemoattractant (KC) and tumor necrosis factor-α (TNF-α) protein in the intestinal mucosa. In an in-vitro study, young adult mouse colonic epithelial (YAMC) cells were incubated with TNF-α, and KC mRNA/protein expression and nuclear translocation of nuclear factor-kappa B (NF-κB) were measured with or without CORM-2 treatment.
Results: After DSS administration, DAI score increased in a time-dependent manner, and this increase was ameliorated by CORM-2 treatment. Increases in MPO activity and in the production of KC and TNF-α after DSS administration were significantly inhibited by CORM-2. TNF-α-induced KC production in YAMC cells was also inhibited by CORM-2 treatment. Further, nuclear translocation of NF-κB in YAMC cells was inhibited by CORM-2.
Conclusion: CORM-liberated CO significantly inhibited inflammatory response in murine colitis by inhibition of cytokine production in the colonic epithelium. These results suggest that CO could become a new therapeutic molecule for inflammatory bowel disease.