Clinical studies, including twin studies, support the concept that the risk of atopic dermatitis (AD) may be mediated through skin-specific genes, rather than simply through systemic immune or atopy risk genes. The SPINK5 gene is expressed on epithelial surfaces and may provide protection against other allergenic serine proteases. Mutations in the SPINK5 gene result in Netherton syndrome, a disorder characterised by AD, ichthyosis, and elevated serum IgE levels. We genotyped 21 single nucleotide polymorphisms (SNPs) from the SPINK5 gene for 1090 case-control samples (631 patients with AD and 459 normal controls) and analysed the SNPs and haplotypes in this gene and also searched for gene-gene interactions between SPINK5 and the DEFB1 gene that we previously reported. Six SNPs [rs17718511 (P = 0.026), rs17860502 (P = 0.024), KN0001820 (P = 0.045), rs60978485 (P = 0.007), rs17718737 (P = 0.02), and rs1422985 (P = 0.038)] and the haplotype TAA (rs60978485, rs6892205, rs2303064; P = 0.023) in the SPINK5 gene showed significant different allelic or genotypic distributions between the AD group and the control group. We also found that four SNPs [rs17718511 (P = 0.033), rs17860502 (P = 0.031), rs60978485 (P = 0.005), rs17718737 (P = 0.023)] and the haplotype TAA (P = 0.02) in the SPINK5 gene showed associations with the susceptibility of the allergic type of AD (ADe). In addition to this finding, we speculate that the SNPs from DEFB1 and SPINK5 affect the individual susceptibility to development of ADe in an additive manner. This study provides evidence for a significant interaction between allergens and the SPINK5 gene that may contribute to ADe susceptibility.
© 2010 John Wiley & Sons A/S.