Much of our knowledge about the electric field distribution in transcranial current stimulation (tCS) still relies on results obtained from layered spherical head models. In this work we created a high resolution finite element model of a human head by segmentation of MRI images, and paid particular attention to the representation of the cortical sheet. This model was then used to calculate the electric field induced by two electrodes: an anode placed above the left motor cortex, and a cathode placed over the right eyebrow. The results showed that the maxima of the current density appear located on localized hotspots in the bottom of sulci and not on the cortical surface as would be expected from spherical models. This also applies to the components of the current density normal and tangential to the cortical surface. These results show that such highly detailed head models are needed to correctly predict the effects of tCS on cortical neurons.