The use of immunosuppressive drugs in transplanted patients is associated with the development of diabetes, possibly due to β-cell toxicity. To better understand the mechanisms leading to post-transplant diabetes, we investigated the actions of prolonged exposure of isolated human islets to therapeutical levels of tacrolimus (Tac) or cyclosporin A (CsA). Islets were isolated from the pancreas of multiorgan donors by enzymatic digestion and density gradient centrifugation. Functional, survival and molecular studies were then performed after 4 days of incubation with therapeutical concentrations of Tac or CsA. Glucose-induced insulin secretion was significantly decreased in Tac, but not in CsA exposed islets, which was associated with a reduction of the amount of insulin granules as shown by electron microscopy. The percentage of apoptotic β-cells was higher in Tac than CsA exposed islets. Microarray experiments followed by Gene Set Enrichment Analysis revealed that gene expression was more markedly affected upon Tac treatment. In conclusion, Tac and CsA affect features of beta-cell differently, with several changes occurring at the molecular level.