B-cell receptor (BCR) signaling has been inferred as an important mechanism for disease progression in chronic lymphocytic leukemia (CLL) and other B-cell malignancies. In response to BCR activation, CLL cells secrete the chemokine CCL3, which fosters interactions between CLL cells and the leukemia microenvironment. CCL3 secretion correlates with expression of the 70-kDa ζ-associated protein (ZAP-70) and responsiveness of the CLL clone to BCR stimulation. Here, we measured CCL3 plasma levels by enzyme-linked immunosorbent assay (ELISA) in 351 CLL patients and examined CCL3 levels for associations with established prognostic markers and time from diagnosis to initial therapy. We found that CCL3 plasma concentrations were strongly associated with established prognostic markers. In a Cox proportional hazards regression model, CCL3 as well as established prognostic markers (immunoglobulin heavy chain variable-region mutation status, CD38 or ZAP-70 cytogenetics, clinical stage) were significantly associated with time to treatment. Multivariable analysis revealed that CCL3 (hazard ratio [HR] = 2.33, P < .0001), advanced clinical stage (HR = 2.75, P = .0025), poor risk cytogenetics (del 17p, HR = 2.38; del11q, HR = 2.36, P = .001), and CD38 expression (HR = 1.43, P = .023) were independent prognostic markers. Collectively, CCL3 is a novel, robust, and independent prognostic marker in CLL that can easily and reliably be measured by ELISA. CCL3 therefore should become useful for risk assessment in patients with CLL.