Infection with uropathogenic Escherichia coli (UPEC), the causative agent of most uncomplicated urinary tract infections, proceeds in an ascending manner and, if left untreated, may result in bacteremia and urosepsis. To examine the fate of UPEC after its entry into the bloodstream, we developed a murine model of sublethal bacteremia. CBA/J mice were inoculated intravenously with 1 × 10(6) CFU of pyelonephritis strain E. coli CFT073 carrying a bioluminescent reporter. Biophotonic imaging, used to monitor the infection over 48 h, demonstrated that the bacteria disseminated systemically and appeared to localize at discrete sites. UPEC was recovered from the spleen, liver, kidneys, lungs, heart, brain, and intestines as early as 20 min postinoculation, peaking at 24 h postinoculation. A nonpathogenic E. coli K-12 strain, however, disseminated at significantly lower levels (P < 0.01) and was cleared from the liver and cecum by 24 h postinoculation. Isogenic mutants lacking type 1 fimbriae, P fimbriae, capsule, TonB, the heme receptors Hma and ChuA, or particularly the sialic acid catabolism enzyme NanA were significantly outcompeted by wild-type CFT073 during bacteremia (P < 0.05), while flagellin and hemolysin mutants were not.