In C-arm-based flat-detector computed tomography (FDCT) it frequently happens that the patient exceeds the scan field of view (SFOV) in the transaxial direction because of the limited detector size. This results in data truncation and CT image artefacts. In this work three truncation correction approaches for extended field-of-view (EFOV) reconstructions have been implemented and evaluated. An FDCT-based method estimates the patient size and shape from the truncated projections by fitting an elliptical model to the raw data in order to apply an extrapolation. In a camera-based approach the patient is sampled with an optical tracking system and this information is used to apply an extrapolation. In a CT-based method the projections are completed by artificial projection data obtained from the CT data acquired in an earlier exam. For all methods the extended projections are filtered and backprojected with a standard Feldkamp-type algorithm. Quantitative evaluations have been performed by simulations of voxelized phantoms on the basis of the root mean square deviation and a quality factor Q (Q = 1 represents the ideal correction). Measurements with a C-arm FDCT system have been used to validate the simulations and to investigate the practical applicability using anthropomorphic phantoms which caused truncation in all projections. The proposed approaches enlarged the FOV to cover wider patient cross-sections. Thus, image quality inside and outside the SFOV has been improved. Best results have been obtained using the CT-based method, followed by the camera-based and the FDCT-based truncation correction. For simulations, quality factors up to 0.98 have been achieved. Truncation-induced cupping artefacts have been reduced, e.g., from 218% to less than 1% for the measurements. The proposed truncation correction approaches for EFOV reconstructions are an effective way to ensure accurate CT values inside the SFOV and to recover peripheral information outside the SFOV.