Introduction: Perfusion (Q) single photon emission computed tomography (SPECT) has been used to divert dose away from higher-functioning lung during radiation therapy (RT) planning. This study aimed to (1) study regional lung function through coregistered pulmonary ventilation/perfusion (V/Q)-SPECT-CT and (2) classify these defects for its potential value in radiation planning in patients with non-small cell lung cancer (NSCLC).
Methods: Patients with stages I to III NSCLC requiring radiation-based therapy were eligible for this prospective study. V/Q-SPECT performed within 2 weeks before the start of radiation was interpreted by nuclear medicine physicians and then measured by a semiquantitative score. The potential mechanism of V and Q defects was analyzed; the potential impact of V/Q-SPECT over Q-SPECT alone was completed through classified applications (high-dose RT versus RT avoidance) during planning.
Results: Images of 51 consecutive patients were analyzed. The V and Q defects were matched, reverse mismatched (V defect > Q defect), and mismatched (Q defect > V defect) in 61, 31, and 8% of patients, respectively. Tumor was the leading cause of the defects of ipsilateral lung in 73% of patients. The defect scores of the ipsilateral lung were greater in patients with central primaries than those with peripheral primaries for both V-SPECT (2.3 ± 1.1 versus 1.5 ± 0.8, p = 0.017) and Q-SPECT (2.2 ± 0.8 versus 1.4 ± 0.6, p = 0.000). The patients with chronic obstructive pulmonary disease had greater defect scores in contralateral lung for both V-SPECT (1.5 ± 0.7 versus 1.0 ± 0.8, p = 0.006) and Q-SPECT (1.4 ± 0.6 versus 1.0 ± 0.4, p = 0.010). On assessing the potential value of SPECT on RT plan, 39% of patients could have their RT plan when applying V/Q-SPECT rather than Q-SPECT alone.
Conclusions: V/Q-SPECT provides a more comprehensive functional assessment, may provide additional value over Q-SPECT alone in assessing local pulmonary function, and guide RT plan decisions in patients with NSCLC.