The formation of secondary organic aerosol (SOA) produced from α-pinene, linalool, and limonene by ozonolysis was examined using a dynamic chamber system that allowed the simulation of ventilated indoor environments. Experiments were conducted at typical room temperatures and air exchange rates. Limonene ozonolysis produced the highest SOA mass concentrations and linalool the lowest with α-pinene being intermediate. Simplified empirical modeling simulations were conducted to provide insights into reaction chemistry. Assessment of variability of particle-bound reactive oxygen species (ROS) may be important in the understanding of health effects associated with particulate matter. The ROS intensities defined as ROS/SOA mass were found to be moderately correlated with the SOA densities. Greater ROS intensities were observed for the cases where ozone was in excess. ROS intensities approached a relatively constant value in the region where ozone was in deficit. The estimated initial ROS half-life time was approximately 6.5 h at room temperature suggesting the time sensitivity of ROS measurements. The ROS formed from terpenoid ozonolysis could be separated into three categories: short-lived/high reactive/volatile, semivolatile/relatively stable and nonvolatile/low reactive species based on ROS measurements under various conditions. Such physical characterization of the ROS in terms of reactivity and volatility provides some insights into the nature of ROS.