Micropatterning as a tool to decipher cell morphogenesis and functions

J Cell Sci. 2010 Dec 15;123(Pt 24):4201-13. doi: 10.1242/jcs.075150.

Abstract

In situ, cells are highly sensitive to geometrical and mechanical constraints from their microenvironment. These parameters are, however, uncontrolled under classic culture conditions, which are thus highly artefactual. Micro-engineering techniques provide tools to modify the chemical properties of cell culture substrates at sub-cellular scales. These can be used to restrict the location and shape of the substrate regions, in which cells can attach, so-called micropatterns. Recent progress in micropatterning techniques has enabled the control of most of the crucial parameters of the cell microenvironment. Engineered micropatterns can provide a micrometer-scale, soft, 3-dimensional, complex and dynamic microenvironment for individual cells or for multi-cellular arrangements. Although artificial, micropatterned substrates allow the reconstitution of physiological in situ conditions for controlled in vitro cell culture and have been used to reveal fundamental cell morphogenetic processes as highlighted in this review. By manipulating micropattern shapes, cells were shown to precisely adapt their cytoskeleton architecture to the geometry of their microenvironment. Remodelling of actin and microtubule networks participates in the adaptation of the entire cell polarity with respect to external constraints. These modifications further impact cell migration, growth and differentiation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Culture Techniques / methods*
  • Cell Differentiation
  • Cell Polarity
  • Cell Proliferation
  • Cell Shape*
  • Cells / cytology*
  • Cells / metabolism*
  • Humans