The mechanism of the alteration in carcinogenic arylamine-activating capacities in livers bearing pre-neoplastic (or hyperplastic) nodules induced by the Solt-Farber protocol was investigated in relation to the changes in hepatic cytochrome P-450 isozymes. In the Salmonella mutagenesis test, the numbers of revertants induced with 2-amino-3-methylimidazo[4,5-f]quinoline and 2-aminofluorene were significantly lower in the presence of microsomes of nodule-bearing livers than of control livers. A similar tendency was also observed with another heterocyclic arylamine, 2-amino-6-methyldipyrido-[1,2-a:3',2'-d]imidazole. In Western blots using specific antibodies against 5 different forms of cytochrome P-450, hepatic contents of P-450-male (a main constitutive form) and P-450b (a main phenobarbital-inducible form) were decreased in the livers with hyperplastic nodules to 63% and 35% of the corresponding controls, while no significant decrease was observed in the contents of P-448-H (a main 3-methylcholanthrene-inducible form), P-450(6 beta-1) (testosterone 6 beta-hydroxylase) and P-450e (a phenobarbital-inducible form). In accordance with the reduction in P-450-male, capacities for microsomal 16 alpha- and 2 alpha-hydroxylations, but not 6 beta-hydroxylation, of testosterone were decreased in the livers with hyperplastic nodules. Although P-448-H has higher capacities for the activation of arylamines than does P-450-male, the hepatic content of P-450-male is more than ten-fold higher than that of P-448-H in both normal and nodule-bearing livers. These results indicate that the selective decrease in hepatic content of P-450-male is likely to be a main cause of the decrease in arylamine metabolic activating capacities in livers with hyperplastic nodules.