HS1-associated protein X-1 (Hax-1) is an intracellular protein with anti-apoptotic properties that, in addition to suppressing cell death by inhibiting the activation of initiator caspase-9 and death caspase-3, is involved in an increasing number of signaling cascades. However, its expression and function in the central nervous system lesion are still unclear. In this study, we performed a traumatic brain injury (TBI) model in adult rats and investigated the dynamic changes of Hax-1 expression in the brain cortex. Western blot and immunohistochemistry analysis revealed that Hax-1 was present in normal brain. It gradually increased, reached a peak at day 3 after TBI, and then declined during the following days. Double immunofluorescence staining showed that Hax-1 immunoreactivity (IR) was found in neurons, but not astrocytes and microglia. Moreover, the 3rd day post injury was the apoptotic peak implied by the alteration of caspase-3, Bcl-2 and TUNEL. All these results suggested that Hax-1 may be involved in the pathophysiology of TBI and further research is needed to have a good understanding of its function and mechanism.