Immunoglobulin 1 (IgG1) Fc-glycosylation profiling of anti-citrullinated peptide antibodies from human serum

Proteomics Clin Appl. 2009 Jan;3(1):106-15. doi: 10.1002/prca.200800098. Epub 2008 Nov 20.

Abstract

In several autoimmune disorders, including rheumatoid arthritis (RA), autoantibodies are thought to be the driving force of pathogenicity. Glycosylation of the Fc-part of human Igs is known to modulate biological activity. Hitherto, glycosylation of human IgG-Fc has been analyzed predominantly at the level of total serum IgG, revealing reduced galactosylation in RA. Given the pathogenic relevance of autoantibodies in RA, we wished, in the present study, to address the question whether distinct Fc-glycosylation features are observable at the level of antigen-specific IgG subpopulations. For this purpose, we have developed a method for the microscale purification and Fc-glycosylation analysis of anti-citrullinated peptide antibodies (ACPA). ACPA represent a group of autoantibodies that occur with unique specificity in RA patients. Their presence is associated with increased inflammatory disease activity and rapid joint destruction. Results indicate that ACPA of the IgG1 subclass vary considerably from total serum IgG1 with respect to Fc-galactosylation, with galactosylation being higher on ACPA than on serum IgG1 for some patients, while other patients show higher galactosylation on serum IgG1 than on ACPA. Using this method, studies can be performed on the biological and clinical relevance of ACPA glycosylation within RA patient cohorts.