We have earlier demonstrated T-cell-independent antitumor effects of a combination of anti-CD40 monoclonal antibody (mAb) and CpG oligodeoxynucleotides (CpG) which involved macrophages. As some immunotherapeutic treatments can be potentiated by chemotherapy, we tested if cyclophosphamide (CY) would enhance the antitumor effect of anti-CD40 mAb+CpG. Treatment of B16 melanoma-bearing mice with CY and anti-CD40 mAb+CpG resulted in a significant reduction in tumor growth in immunocompetent mice compared with either CY alone or anti-CD40 mAb with CpG. This enhanced antitumor effect was maintained in severe combined immunodeficiency mice, as measured by both tumor growth and overall survival. Natural killer cells were not required for this antitumor effect as it was also observed in severe combined immunodeficiency/beige mice. Moreover, although CY treatment of immunocompetent mice suppressed natural killer cell activity, it did not negatively affect the antitumor activity of their macrophages when assayed in vitro. Depletion of macrophages in vivo reduced the antitumor effect of CY and anti-CD40 mAb+CpG. These results suggest that therapeutic strategies to activate macrophages may have potential for clinical application in cancer patients receiving chemotherapy.