An adaptive Kalman filter for ECG signal enhancement

IEEE Trans Biomed Eng. 2011 Apr;58(4):1094-103. doi: 10.1109/TBME.2010.2099229. Epub 2010 Dec 13.

Abstract

The ongoing trend of ECG monitoring techniques to become more ambulatory and less obtrusive generally comes at the expense of decreased signal quality. To enhance this quality, consecutive ECG complexes can be averaged triggered on the heartbeat, exploiting the quasi-periodicity of the ECG. However, this averaging constitutes a tradeoff between improvement of the SNR and loss of clinically relevant physiological signal dynamics. Using a bayesian framework, in this paper, a sequential averaging filter is developed that, in essence, adaptively varies the number of complexes included in the averaging based on the characteristics of the ECG signal. The filter has the form of an adaptive Kalman filter. The adaptive estimation of the process and measurement noise covariances is performed by maximizing the bayesian evidence function of the sequential ECG estimation and by exploiting the spatial correlation between several simultaneously recorded ECG signals, respectively. The noise covariance estimates thus obtained render the filter capable of ascribing more weight to newly arriving data when these data contain morphological variability, and of reducing this weight in cases of no morphological variability. The filter is evaluated by applying it to a variety of ECG signals. To gauge the relevance of the adaptive noise-covariance estimation, the performance of the filter is compared to that of a Kalman filter with fixed, (a posteriori) optimized noise covariance. This comparison demonstrates that, without using a priori knowledge on signal characteristics, the filter with adaptive noise estimation performs similar to the filter with optimized fixed noise covariance, favoring the adaptive filter in cases where no a priori information is available or where signal characteristics are expected to fluctuate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Arrhythmias, Cardiac / diagnosis*
  • Computer Simulation
  • Diagnosis, Computer-Assisted / methods*
  • Electrocardiography / methods*
  • Humans
  • Models, Cardiovascular*
  • Models, Statistical
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted*