Chemical ligation of S-scylated cysteine peptides to form native peptides via 5-, 11-, and 14-membered cyclic transition states

J Org Chem. 2011 Jan 7;76(1):85-96. doi: 10.1021/jo1015757. Epub 2010 Dec 15.

Abstract

Cysteine-containing dipeptides 3a-l, (3b+3b') (compound numbers in parentheses are used to indicate racemic mixtures; thus (3b+3b') is the racemate of 3b and 3b'), and tripeptide 13 were synthesized in 68-96% yields by acylation of cysteine with N-(Pg-α-aminoacyl)- and N-(Pg-α-dipeptidoyl)benzotriazoles (where Pg stands for protecting group in the nomenclature for peptides throughout the paper) in the presence of Et(3)N. Cysteine-containing peptides 3a-l and 13 were S-acylated to give S-(Pg-α-aminoacyl)dipeptides 5a-l and S-(Pg-α-aminoacyl)tripeptide 14 without racemization in 47-90% yields using N-(Pg-α-aminoacyl)benzotriazoles 2 in CH(3)CN-H(2)O (7:3) in the presence of KHCO(3). (In our peptide nomenclature, the prefixes di-, tri-, etc. refer to the number of amino acid residues in the main peptide chain; amino acid residues attached to sulfur are designated as S-acyl peptides. Thus we avoid use of the prefix "iso".) Selective S-acylations of serine peptide 3k and threonine peptide 3l containing free OH groups were thus achieved in 58% and 72% yield, respectively. S-(Pg-α-aminoacyl)cysteines 4a,b underwent native chemical ligations to form native dipeptides 3f,i via 5-membered cyclic transition states. Microwave irradiation of S-(Pg-α-aminoacyl)tripeptide 15 and S-(Pg-α-aminoacyl)tetrapeptide 17 in the presence of NaH(2)PO(4)/Na(2)HPO(4) buffer solution at pH 7.8 achieved chemical ligations, involving intramolecular migrations of acyl groups, via 11- and 14-membered cyclic transition states from the S-atom of a cysteine residue to a peptide terminal amino group to form native peptides 19 and 20 in isolated yields of 26% and 23%, respectively.

MeSH terms

  • Acylation
  • Cysteine / chemistry*
  • Hydroxides / chemistry
  • Magnetic Resonance Spectroscopy
  • Microwaves
  • Molecular Structure
  • Peptides / chemistry*
  • Peptides, Cyclic / chemistry*
  • Substrate Specificity
  • Sulfur / chemistry
  • Triazoles / chemistry*

Substances

  • Hydroxides
  • Peptides
  • Peptides, Cyclic
  • Triazoles
  • Sulfur
  • hydroxide ion
  • Cysteine