Purpose: Melanoma is relatively resistant to chemotherapy; improved targeting of molecules critical for cell proliferation and survival are needed. Phosphatidylinositol-3 kinase (PI3K) is an important target in melanoma; however, activity of PI3K inhibitors (PI3KI) is limited. Our purpose was to assess mTOR as a cotarget for PI3K.
Methods: Using a method of quantitative immunofluorescence to measure mTOR expression in a large melanoma cohort, we studied associations with PI3K subunits, p85 and p110α. We assessed addition of the mTOR inhibitor rapamycin to 2 PI3KIs, NVP-BKM120 and LY294002. We studied in vitro activity of a novel dual PI3K/mTOR inhibitor NVP-BEZ235 and activity of the combination of NVP-BEZ235 and the MAP/ERK kinase (MEK) inhibitor AZD6244.
Results: Strong coexpression of mTOR and p110α was observed (ρ = 0.658; P < 0.0001). Less coexpression was seen with p85 (ρ = 0.239; P < 0.0001). Strong synergism was shown between rapamycin and both PI3KIs. Activity of both PI3KIs was similarly enhanced with all rapamycin concentrations used. The dual PI3K/mTOR inhibitor effectively inhibited viability in 23 melanoma cell lines (IC(50) values in the nanomolar range), regardless of B-Raf mutation status, with resultant reduction in clonogenicity and downregulation of pAkt and pP70S6K. Synergism was seen when combining NVP-BEZ235 and AZD6244, with resultant increases in poly(ADP-ribose) polymerase and caspase-2 cleavage.
Conclusions: mTOR and p110α are coexpressed in melanoma. Rapamycin concentrations as low as 1 nmol/L enhance activity of PI3KIs. The dual PI3K/mTOR inhibitor NVP-BEZ235 is highly active in melanoma cells in vitro, suggesting that concurrent PI3K and mTOR targeting in melanoma warrants further investigation, both alone and in combination with MEK inhibitors.