Pseudophoenix ekmanii is a threatened palm species endemic to the Dominican Republic. Sap from trees is extracted to make a local drink; once they are tapped the individual usually dies. Plants are also illegally harvested for the nursery trade and destroyed by poachers hunting the endemic and threatened Hispaniolan parrot. We used 7 DNA microsatellite markers to assist land managers in developing conservation strategies for this palm. We sampled 4 populations along the known distribution range of this species (3 populations from the mainland and 1 from the small island of Isla Beata), for a total sample of n = 104. We found strong evidence for genetic drift, inbreeding, and moderate gene flow (i.e., all populations had at least 4 loci that were not in Hardy-Weinberg equilibrium, at least 9 loci pairs were in linkage disequilibrium, the pairwise F(ST) values ranged from 0.069 to 0.266, and had positive F(IS) values). Data supported an isolation-by-distance model, and cluster analyses based on genetic distances resolved 2 groups that match a north-south split. The population from Isla Beata had the lowest levels of genetic diversity and was the only one in which we found pairs of individuals with identical shared multilocus genotypes.