Chronic infection with hepatitis C virus (HCV) is a major public health problem, with nearly 170 million infected individuals worldwide. Current treatment for chronic infection is a combination of pegylated IFN-α2 and ribavirin (RBV); however, this treatment is effective in fewer than 50% of patients infected with HCV genotype 1 or 4. Recent studies identified the chemokine CXCL10 (also known as IP-10) as an important negative prognostic biomarker. Given that CXCL10 mediates chemoattraction of activated lymphocytes, it is counterintuitive that this chemokine correlates with therapeutic nonresponsiveness. Herein, we offer new insight into this paradox and provide evidence that CXCL10 in the plasma of patients chronically infected with HCV exists in an antagonist form, due to in situ amino-terminal truncation of the protein. We further demonstrated that dipeptidyl peptidase IV (DPP4; also known as CD26), possibly in combination with other proteases, mediates the generation of the antagonist form(s) of CXCL10. These data offer what we believe to be the first evidence for CXCL10 antagonism in human disease and identify a possible factor contributing to the inability of patients to clear HCV.