Putative CD133(+) brain tumor stem cells have been shown to be located in niches and as single cells. This is the first study providing insight into the different phenotypes of CD133(+) cells in glioblastoma according to localization. Paraffin sections were stained by double immunofluorescence with CD133 and the candidate stem cell markers Sox2, Bmi-1, EGFR, podoplanin and nestin, the proliferation marker Ki67 and the endothelial cell markers CD31, CD34, and VWF. Cell counting showed that the CD133(+) cells in the niches had a significantly higher expression of Sox2, EGFR and nestin compared to CD133(+) single cells, but only a 3% Ki67 labeling index versus 14% found for CD133(+) single cells. Only low endothelial cell marker expression was found in the niches or the CD133(-) tumor areas, while 43% CD133(+)/CD31(+) and 25% CD133(+)/CD34(+) single cells were found. CD133(+) blood vessels within CD133(+) niches were less proliferative and more often Bmi-1(+) than CD133(+) blood vessels outside niches. In conclusion, different CD133(+) cell phenotypes exist according to the in situ localization, and also the phenotype of CD133(+) blood vessels vary according to the localization. CD133(+) niches contain stem-like cells with a lower proliferation index than CD133(+) single cells, which have an endothelial differentiation profile suggesting a role in angiogenesis.