Since H(2)S has an emerging role as a cardioprotector, we hypothesized that NaHS addition to the new cardioplegic histidine buffer solution (HBS) could improve its cardioprotective potential. Male Wistar-Han rat hearts were divided in 4 groups: i) control, ii) perfusion control (perfusion only), iii) 6h ischemia in HBS or in a modified-HBS with 100 μM of NaHS, a H(2)S donor, (HBSM) and iv) as iii followed by 30 min reperfusion. During ischemia, aliquots of the cardioplegic solution were collected for NMR analysis. Heart mitochondria respiration and transmembrane potential were measured after ischemia or after ischemia followed by reperfusion. Proteins involved in the apoptotic signaling pathway were also quantified in both mitochondrial and tissue samples. Cardiac mechanic performance was evaluated by measuring the heart rate and the left ventricular pressure. In HBSM-preserved hearts, a) glucose consumption increased as well as lactate and alanine production during ischemia, b) heart mitochondria presented an improved phosphorylative efficiency, including decreased phosphorylative lag phase for complex I and complex II substrates, c) mitochondrial and tissue p53, Bax and caspase-9 were lower and d) there was a more positive atrial chronotropic response than in HBS-preserved hearts. We concluded that the addition of NaHS to HBS enhances glycolysis during ischemia, decreases mitochondrial dysfunction, especially by preserving the phosphorylative system, prevents apoptosis and during ischemia/reperfusion.
Copyright © 2010 Elsevier B.V. All rights reserved.