Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM

Diabetes. 1990 Nov;39(11):1381-90. doi: 10.2337/diab.39.11.1381.

Abstract

To assess the role of muscle and liver in the pathogenesis of postprandial hyperglycemia in non-insulin-dependent diabetes mellitus (NIDDM), we administered an oral glucose load enriched with [14C]glucose to 10 NIDDM subjects and 10 age- and weight-matched nondiabetic volunteers and compared muscle glucose disposal by measuring forearm balance of glucose, lactate, alanine, O2, and CO2 (with forearm calorimetry). In addition, we used the dual-lable isotope method to compare overall rates of glucose appearance (Ra) and disappearance (Rd), suppression of endogenous glucose output, and splanchnic glucose sequestration. During the initial 1-1.5 h after glucose ingestion, plasma glucose increased by approximately 8 mM in NIDDM vs. approximately 3 mM in nondiabetic subjects (P less than 0.01); overall glucose Ra was nearly 11 g greater in NIDDM than nondiabetic subjects (45.1 +/- 2.3 vs. 34.4 +/- 1.5 g, P less than 0.01), but glucose Rd was not significantly different in NIDDM (35.1 +/- 2.4 g) and nondiabetic (33.3 +/- 2.7 g) subjects. The greater overall glucose Ra of NIDDM subjects was due to 6.8 g greater endogenous glucose output (13.7 +/- 1.1 vs. 6.8 +/- 1.0 g, P less than 0.01) and 3.8 g less oral glucose splanchnic sequestration of the oral load (31.4 +/- 1.5 vs. 27.5 +/- 0.9 g, P less than 0.05). Although glucose taken up by muscle was not significantly different in NIDDM and nondiabetic subjects (39.3 +/- 3.5 vs. 41.0 +/- 2.5 g/5 h), a greater amount of the glucose taken up by muscle in NIDDM was released as lactate and alanine (11.7 +/- 1.0 vs. 5.2 +/- 0.3 g in nondiabetic subjects, P less than 0.01), and less was stored (11.7 +/- 1.3 vs. 16.9 +/- 1.5 g, P less than 0.05). We conclude that increased systemic glucose delivery, due primarily to reduced suppression of endogenous hepatic glucose output and, to a lesser extent, reduced splanchnic glucose sequestration, is the predominant factor responsible for postprandial hyperglycemia in NIDDM.

Publication types

  • Clinical Trial
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Administration, Oral
  • Alanine / blood
  • Blood Glucose / analysis
  • Carbon Dioxide / blood
  • Carbon Radioisotopes
  • Diabetes Mellitus, Type 2 / complications
  • Diabetes Mellitus, Type 2 / metabolism*
  • Female
  • Glucose / administration & dosage
  • Glucose / metabolism*
  • Humans
  • Hyperglycemia / etiology
  • Hyperglycemia / metabolism*
  • Insulin / blood
  • Lactates / blood
  • Liver / metabolism*
  • Male
  • Middle Aged
  • Muscles / metabolism*
  • Oxygen / blood
  • Time Factors

Substances

  • Blood Glucose
  • Carbon Radioisotopes
  • Insulin
  • Lactates
  • Carbon Dioxide
  • Glucose
  • Alanine
  • Oxygen