Layered hydroxide hybrid nanostructures: a route to multifunctionality

Chem Soc Rev. 2011 Feb;40(2):1031-58. doi: 10.1039/c0cs00159g. Epub 2011 Jan 10.

Abstract

Today, seeking new materials for tailor-made applications and new devices leads to explore the potential offered by various kinds of functional building blocks. Hence, it concerns not only solid-state chemists, physicists or materials engineers, but also the area of (supra)molecular chemistry, and biochemistry as well. This is especially clear in the field of hybrid multifunctional materials. Indeed, their design requires investigating new concepts derived from principles developed in these different disciplines. The aim of this critical review is to present the last achievements concerning transition metal hydroxide hybrids, their synthesis, flexibility and functional properties. They often provide nice model systems for understanding the correlation between structure and physical properties brought by the molecular moieties grafted onto the metal hydroxide basis layers. The contribution of the atomic scale modelling to the electronic structure calculations and structural optimization is also reported (216 references).