Remembering locations of food resources is critical for animal survival. Gibbons are territorial primates which regularly travel through small and stable home ranges in search of preferred, limited and patchily distributed resources (primarily ripe fruit). They are predicted to profit from an ability to memorize the spatial characteristics of their home range and may increase their foraging efficiency by using a 'cognitive map' either with Euclidean or with topological properties. We collected ranging and feeding data from 11 gibbon groups (Hylobates lar) to test their navigation skills and to better understand gibbons' 'spatial intelligence'. We calculated the locations at which significant travel direction changes occurred using the change-point direction test and found that these locations primarily coincided with preferred fruit sources. Within the limits of biologically realistic visibility distances observed, gibbon travel paths were more efficient in detecting known preferred food sources than a heuristic travel model based on straight travel paths in random directions. Because consecutive travel change-points were far from the gibbons' sight, planned movement between preferred food sources was the most parsimonious explanation for the observed travel patterns. Gibbon travel appears to connect preferred food sources as expected under the assumption of a good mental representation of the most relevant sources in a large-scale space.