Gluconacetobacter xylinus synthesises cellulose in an analogous fashion to plants. Through fermentation of Ga. xylinus in media containing cell wall polysaccharides from the hemicellulose and/or pectin families, composites with cellulose can be produced. These serve as general models for the assembly, structure, and properties of plant cell walls. By studying structure/property relationships of cellulose composites, the effects of defined hemicellulose and/or pectin polysaccharide structures can be investigated. The macroscopic nature of the composites also allows composite mechanical properties to be characterised. The method for producing cellulose-based composites involves reviving and then culturing Ga. xylinus in the presence of desired hemicelluloses and/or pectins. Different conditions are required for construction of hemicellulose- and pectin-containing composites. Fermentation results in a floating mat or pellicle of cellulose-based composite that can be recovered, washed, and then studied under hydrated conditions without any need for intermediate drying.