In presence of active orbital degrees of freedom, elementary excitations around a broken-symmetry state may include multipolar waves, but none of these exotic dispersive excitation branches has ever been identified. We show that quadrupolar waves constitute a major component of the dynamics of uranium dioxide in its magnetoquadrupolar ordered phase, and that many unexplained features in existing inelastic neutron scattering data, including a whole excitation branch, are associated with these propagating quadrupolar fluctuations. Our model permits us to separate the role of Jahn-Teller and superexchange mechanisms as sources of quadrupolar interactions.