The spin dependent properties of epitaxial Fe₃O₄ thin films on GaAs(001) are studied by the ferromagnetic proximity polarization (FPP) effect and magneto-optical Kerr effect (MOKE). Both FPP and MOKE show oscillations with respect to Fe₃O₄ film thickness, and the oscillations are large enough to induce repeated sign reversals. We attribute the oscillatory behavior to spin-polarized quantum well states forming in the Fe₃O₄ film. Quantum confinement of the t(2g) states near the Fermi level provides an explanation for the similar thickness dependences of the FPP and MOKE oscillations.