Magnetic resonance phase images can yield superior gray and white matter contrast compared to conventional magnitude images. However, the underlying contrast mechanisms are not yet fully understood. Previous studies have been limited to high field acquisitions in adult volunteers and patients. In this study, phase imaging in the neonatal brain is demonstrated for the first time. Compared to adults, phase differences between gray and white matter are significantly reduced but not inverted in neonates with little myelination and iron deposits in their brains. The remaining phase difference between the neonatal and adult brains may be due to a different macromolecule concentration in the unmyelinated brain of the neonates and thus a different frequency due to water macromolecule exchange. Additionally, the susceptibility contrast from brain myelination can be separately studied in neonates during brain development. Therefore, magnetic resonance phase imaging is suggested as a novel tool to study neonatal brain development and pathologies in neonates.
Copyright © 2011 Elsevier Inc. All rights reserved.