Background: Rats fed an early and long-term high-salt diet (HS, NaCl 8%) developed significant cardiovascular hypertrophy without major changes in blood pressure. The mechanism of this cardiac hypertrophy has not been yet elucidated.
Methods: In the present work, we assessed the influence of volume overload and arterial stiffness on the structural and functional cardiac changes induced by a high salt feeding from weaning to 5 months of age in Sprague-Dawley rats.
Results: Cardiac hypertrophy in HS rats was associated with clear augmentation in the size of left ventricular (LV) cardiomyocyte as compared with rats fed regular diet (NS). Echocardiography revealed a marked increase in relative wall thickness. Of note, no alteration of global and regional systolic and diastolic function was detected in HS rats. High sodium consumption was associated with a slight increase in aortic mean and pulse pressure (PP) without effect on pulse wave velocity (PWV) and elastic modulus. Plasma volume and central venous pressure were higher in HS than NS rats. Whereas plasma endothelin level was twofold higher in HS than in NS rats, LV endothelin level was similar in both groups. Treatment by the endothelin receptors blocker bosentan had no detectable effect on the changes induced by HS diet.
Conclusions: High sodium intake was associated with concentric cardiac hypertrophy without change of systolic and diastolic function. Aortic rigidity was not a determinant of cardiac hypertrophy. Beside a likely direct effect of sodium on cardiovascular system the slight increase in arterial pressure and plasma volume play a role.