The synthesis and reactivity of niobium complexes incorporating a tripodal triphenol (tris(3,5-tert-butyl-2-hydroxylphenyl)methane = H(3)[O(3)]) have been investigated. Addition of one equivalent of NbCl(5) in CH(3)CN to H(3)[O(3)] in toluene led to partial HCl elimination, giving [H(O(3))]NbCl(3)(CH(3)CN) (1) with a bidendtate bis(aryloxide) ligand and a pendant phenol arm. Treatment of 1 with THF afforded [H(O(3))]NbCl(3)(THF) (2). Deprotonation of 1 with NEt(3) in toluene promoted coordination of the pendant phenol group to generate (Et(3)NH)[(syn-O(3))NbCl(3)] (3-syn). Prolonged heating of 3-syn resulted in clean conversion to the anti isomer (3-anti). Attempted deprotonation of 2 with PhCH(2)MgCl provided [H(O(3))]Nb(CH(2)Ph)(3) (4), in which alkylation took place at the metal center but the pendant phenol arm remained intact. When 3-syn was treated with PhCH(2)MgCl, [O(3)C]Nb(CH(2)Ph) (5) was produced via C-H activation of the methine C-H bond. The analogous reaction with 3-anti provided a benzylidene complex [anti-O(3)]Nb(CHPh)(THF) (6). During the course of the reaction, the anti ligand conformation is retained. Upon heating, 4 underwent methine C-H and phenol O-H activation, yielding the metalatrane 5. Complexes 1, 3-syn, 3-anti, 4, and 5 were characterized by X-ray diffraction.