Influence of deuteration on lithium acetate dihydrate studied by inelastic X-ray scattering, density functional theory, thermal expansion, elastic and thermodynamic measurements

Dalton Trans. 2011 Feb 28;40(8):1737-42. doi: 10.1039/c0dt01302a. Epub 2011 Jan 21.

Abstract

The influence of deuteration on the properties of lithium acetate dihydrate has been investigated by thermal expansion measurements, ultrasound spectroscopy and calorimetry. Inelastic X-ray scattering has been employed to investigate if the low temperature structural phase transition can be detected by a change in the vibrational spectrum. Density functional theory, DFT, calculations have been employed to complement the experimental investigations. The thermal expansion coefficients and the specific heat of the deuterated compound differ significantly from the protonated form. The differences in the elastic stiffness coefficients are just above the detection limit of the technique employed here. Temperature dependent inelastic X-ray spectroscopic measurements show no significant change of the vibrational spectrum when crossing the transition temperature. The DFT calculations show that the methyl group dynamics are best described in the framework of coupled rotators of opposing methyl groups. One of the coupled rotational modes corresponds to a hindered rotator with a barrier of 15 meV, while the other is a free rotator.