Localization of the dantrolene-binding sequence near the FK506-binding protein-binding site in the three-dimensional structure of the ryanodine receptor

J Biol Chem. 2011 Apr 8;286(14):12202-12. doi: 10.1074/jbc.M110.194316. Epub 2011 Jan 24.

Abstract

Dantrolene is believed to stabilize interdomain interactions between the NH2-terminal and central regions of ryanodine receptors by binding to the NH2-terminal residues 590-609 in skeletal ryanodine receptor (RyR1) and residues 601-620 in cardiac ryanodine receptor (RyR2). To gain further insight into the structural basis of dantrolene action, we have attempted to localize the dantrolene-binding sequence in RyR1/RyR2 by using GFP as a structural marker and three-dimensional cryo-EM. We inserted GFP into RyR2 after residues Arg-626 and Tyr-846 to generate GFP-RyR2 fusion proteins, RyR2Arg-626-GFP and RyR2Tyr-846-GFP. Insertion of GFP after residue Arg-626 abolished the binding of a bulky GST- or cyan fluorescent protein-tagged FKBP12.6 but not the binding of a smaller, nontagged FKBP12.6, suggesting that residue Arg-626 and the dantrolene-binding sequence are located near the FKBP12.6-binding site. Using cryo-EM, we have mapped the three-dimensional location of Tyr-846-GFP to domain 9, which is also adjacent to the FKBP12.6-binding site. To further map the three-dimensional location of the dantrolene-binding sequence, we generated 10 FRET pairs based on four known three-dimensional locations (FKBP12.6, Ser-437-GFP, Tyr-846-GFP, and Ser-2367-GFP). Based on the FRET efficiencies of these FRET pairs and the corresponding distance relationships, we mapped the three-dimensional location of Arg-626-GFP or -cyan fluorescent protein, hence the dantrolene-binding sequence, to domain 9 near the FKBP12.6-binding site but distant to the central region around residue Ser-2367. An allosteric mechanism by which dantrolene stabilizes interdomain interactions between the NH2-terminal and central regions is proposed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Calcium
  • Cell Line
  • Cryoelectron Microscopy
  • Dantrolene / metabolism*
  • Fluorescence Recovery After Photobleaching
  • Fluorescence Resonance Energy Transfer
  • Humans
  • Immunoblotting
  • Immunoprecipitation
  • Protein Binding
  • Ryanodine Receptor Calcium Release Channel / chemistry*
  • Ryanodine Receptor Calcium Release Channel / genetics
  • Ryanodine Receptor Calcium Release Channel / metabolism*
  • Tacrolimus Binding Proteins / metabolism*

Substances

  • Ryanodine Receptor Calcium Release Channel
  • Tacrolimus Binding Proteins
  • Dantrolene
  • Calcium