Anticancer activity of metal complexes: involvement of redox processes

Antioxid Redox Signal. 2011 Aug 15;15(4):1085-127. doi: 10.1089/ars.2010.3663. Epub 2011 May 11.

Abstract

Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Anticarcinogenic Agents / chemistry
  • Anticarcinogenic Agents / pharmacology*
  • Coordination Complexes / chemistry
  • Coordination Complexes / pharmacology*
  • Glutathione / metabolism
  • Homeostasis / drug effects*
  • Humans
  • Ligands
  • Oxidation-Reduction / drug effects
  • Oxidative Stress
  • Thioredoxins / metabolism

Substances

  • Anticarcinogenic Agents
  • Coordination Complexes
  • Ligands
  • Thioredoxins
  • Glutathione