Biotic descriptors--both taxonomic (diversity indices, species richness, and indicator species) and nontaxonomic (biomass, oxygen consumption/production, and anatomical deformities)--are useful tools for measuring a stream's ecological condition. Nontaxonomic parameters detect critical effects not reflected taxonomically. We analyzed changes in Chironomidae populations as taxonomic parameters and mentum deformities as a nontaxonomic parameter for evaluating a South-American-plains stream (Argentina). We performed samplings seasonally (March, June, September, and December; 2005) and physical and chemical measurements at three sampling sites of the stream (DC1 at river source, through DC3 downstream). The specimens collected in sediment and vegetation were analyzed to investigate mouth deformities in Chironomidae larvae. We identified a total of 9 taxa from Chironomidae and Orthocladiinae subfamilies. Shannon's diversity index for Chironomidae decreased from 1.6 bits ind⁻¹ (DC1) to 0.3 bits ind⁻¹ (DC3). The total density of the Chironomidae exhibited a great increase in abundance at site DC3, especially that of Chironomus calligraphus. Chironomidae taxonomic composition also changed among the three sites despite their spatial proximity: C. calligraphus, Goeldichironomus holoprasinus, Parachironomus longistilus, and Polypedilum were present at all three; Corynoneura and Paratanytarsu at DC1 only; Cricotopus at DC1 and DC3; Apedilum elachistus notably at DC2 and DC3; and Parametriocnemus only at DC2. C. calligraphus individuals from DC1 showed no mentum deformities; only 2 from DC2 exhibited mouth-structure alterations; while specimens from DC3 presented the most abnormalities, especially during autumn and late winter. Type-II deformities (supernumerary teeth and gaps) were the most common. Anatomical deformities are sublethal effects representing an early alert to chemically caused environmental degradation. Mentum deformities in benthic-Chironomidae larvae constitute an effective biological-surveillance tool for detecting adverse conditions in sediments and evaluating sediment-quality-criteria compliance. Taxonomic (community composition) and nontaxonomic (condition of larval mouth parts) descriptors, used together, can indicate a stream's ecological state.
Copyright © 2011 Elsevier B.V. All rights reserved.