Genetic parameters for intramuscular fat percentage, marbling score, scrotal circumference, and heifer pregnancy in Red Angus cattle

J Anim Sci. 2011 Jul;89(7):2068-72. doi: 10.2527/jas.2010-3538. Epub 2011 Jan 28.

Abstract

Selection criteria for yearling bulls commonly include indicators of fertility and carcass merit, such as scrotal circumference (SC) and intramuscular fat percentage (IMF). Genetic correlation estimates between ultrasound traits such as IMF and carcass marbling score (MS) with fertility traits SC and heifer pregnancy (HP) have not been reported. Therefore, the objective of this study was to estimate the genetic parameters among the indicator traits IMF and SC, and the economically relevant traits MS and HP. Records for IMF (n=73,051), MS (n=15,260), SC (n=43,487), and HP (n=37,802) were obtained from the Red Angus Association of America, and a 4-generation ancestral pedigree (n=10,460) was constructed from the 8,915 sires represented in the data. (Co)variance components were estimated using a multivariate sire model and average information REML to obtain estimates of heritability and genetic correlations. Fixed effects included contemporary group and the linear effect of age at measurement for all traits, and an additional effect of age of dam for both HP and SC. The random effect of sire was included to estimate additive genetic effects, which were assumed to be continuous for IMF, MS, and SC, but a probit threshold link function was fitted for HP. Generally moderate heritability estimates of 0.29 ± 0.01, 0.35 ± 0.06, 0.32 ± 0.02, and 0.17 ± 0.01 were obtained for IMF, MS, SC, and HP on the underlying scale, respectively. The confidence interval for the estimated genetic correlation between MS and HP (0.10 ± 0.15) included zero, suggesting a negligible genetic association. The genetic correlation between MS and IMF was high (0.80 ± 0.05), but the estimate for HP and SC (0.05 ± 0.09) was near zero, as were the estimated genetic correlations of SC with MS (0.01 ± 0.08) and IMF (0.05 ± 0.06), and for HP with IMF (0.13 ± 0.09). These results suggest that concomitant selection for increased fertility and carcass merit would not be antagonistic.

MeSH terms

  • Adipose Tissue / physiology*
  • Animals
  • Biomarkers
  • Body Composition / genetics*
  • Cattle / anatomy & histology
  • Cattle / genetics*
  • Cattle / physiology
  • Female
  • Fertility / genetics
  • Fertility / physiology
  • Male
  • Muscle, Skeletal / physiology*
  • Pregnancy
  • Scrotum / anatomy & histology*

Substances

  • Biomarkers