Modulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1

Am J Physiol Cell Physiol. 2011 May;300(5):C998-C1012. doi: 10.1152/ajpcell.00370.2010. Epub 2011 Feb 2.

Abstract

In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca(2+) concentrations, whereas at micromolar Ca(2+) concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1(D/D)) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1(D/D) mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1(D/D) mice had depressed Ca(2+) transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca(2+) transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1(D/D) mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1(D/D) fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca(2+) release flux, consistent with increased summation of the Ca(2+) transient and contractile force. Peak Ca(2+) release flux was suppressed at all voltages in voltage-clamped Ryr1(D/D) fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca(2+) release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Calcium / metabolism*
  • Calcium / physiology
  • Calmodulin / metabolism*
  • Calmodulin / physiology
  • Female
  • Male
  • Mice
  • Muscle Contraction / physiology
  • Muscle Strength / physiology
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / physiology
  • Protein Binding
  • Ryanodine Receptor Calcium Release Channel / genetics
  • Ryanodine Receptor Calcium Release Channel / metabolism*
  • Ryanodine Receptor Calcium Release Channel / physiology
  • S100 Proteins / metabolism*
  • S100 Proteins / physiology
  • Sarcoplasmic Reticulum / metabolism*
  • Sarcoplasmic Reticulum / physiology

Substances

  • Calmodulin
  • Ryanodine Receptor Calcium Release Channel
  • S100 Proteins
  • S100A1 protein
  • Calcium