HCV infection is associated with immune dysregulation and B cell Non-Hodgkins lymphoma (HCV-NHL). We have previously shown in vitro that HCV core protein differentially regulates T and B cell functions through two negative signaling pathways, programmed death-1 (PD-1) and suppressor of cytokine signaling-1 (SOCS-1). In this report, we performed a detailed immunologic analysis of T and B cell functions in the setting of HCV-NHL. We observed that T cells isolated from patients with HCV-NHL exhibited an exhausted phenotype including decreased expression of viral-specific and non-specific activation markers; whereas B cells exhibited an activated phenotype including over-expression of cell activation markers and immunoglobulins compared to healthy subjects. Individuals with HCV alone or NHL alone exhibited abnormal T and B cell phenotypes, but to a lesser extent compared to HCV-NHL. This differential activation of T and B lymphocytes was inversely associated with the expression of PD-1 and SOCS-1. Interestingly, blocking PD-1 during TCR activation inhibited SOCS-1 gene expression, suggesting that these regulatory pathways are linked in T cells. Importantly, blocking PD-1 also restored the impaired T cell functions observed in the setting of HCV-NHL. These results support a coordinated mechanism by which HCV might cause immune dysregulation that is associated to HCV-NHL.