Coxsackievirus A16 (CVA16), together with enterovirus type 71 (EV71), is responsible for most cases of hand, foot and mouth disease (HFMD) worldwide. Recent findings suggest that the recombination between CVA16 and EV71, and co-circulation of these two viruses may have contributed to the increase of HFMD cases in China over the past few years. Thus, for CVA16, further understanding of its virology, epidemiology and development of diagnostic tests and vaccines are of importance. The present study aimed to develop reagents and protocols for the detection, characterization and quantitation of CVA16. Recombinant CVA16 capsid subunit proteins VP0, VP3 and truncated VP1, were produced in Escherichia coli and used to immunize guinea pigs to generate polyclonal antibodies. The resultant three antisera detected specifically CVA16 propagated in Vero cells by immunostaining, ELISA and Western blotting. The antisera was used to show that CVA16 capsids were composed of correctly processed VP0, VP1 and VP3 subunits, and were present in the form of efficiently assembled particles. A method for the quantitation of the yield of CVA16 in Vero cells was established based on a Western blotting protocol using the recombinant VP0 as a reference standard and anti-VP0 as the detection antibody. This study shows the development and validation of reagents and methods, for qualitative and quantitative determination of CVA16, which are essential for the development of vaccines.
Copyright © 2011 Elsevier B.V. All rights reserved.