VO2 kinetics and performance in soccer players after intense training and inactivity

Med Sci Sports Exerc. 2011 Sep;43(9):1716-24. doi: 10.1249/MSS.0b013e318211c01a.

Abstract

Purpose: The study's purpose was to examine the effects of a short-term period with intensified training or training cessation of trained soccer players on VO(2) kinetics at 75% maximal aerobic speed, oxidative enzymes, and performance in repeated high-intensity exercise.

Methods: After the last match of the season, 18 elite soccer players were, for a 2-wk period, assigned to a high-intensity training group (n = 7) performing 10 training sessions mainly consisting of aerobic high-intensity training (8 × 2 min) and speed endurance training (10-12 × 30-s sprints) or a training cessation group (n = 11) that refrained from training.

Results: For the training cessation group, VO(2) kinetics became slower (P < 0.05) with a larger time constant (τ = 21.5 ± 2.9 vs 23.8 ± 3.2 s (mean ± SD, before vs after)) and a larger mean response time (time delay + τ = 45.0 ± 1.8 vs 46.8 ± 2.2 s). The amount of muscle pyruvate dehydrogenase (17%, P < 0.01) and maximal activity of citrate synthase (12%) and 3-hydroxyacyl-CoA (18%, P < 0.05) were lowered. In addition, the fraction of slow twitch fibers (56% ± 18% vs 47% ± 15%, P < 0.05), Yo-Yo intermittent recovery level 2 test (845 ± 160 vs 654 ± 99 m), and the repeated sprint performance (33.41 ± 0.96 vs 34.11 ± 0.92 s, P < 0.01) were reduced. For the high-intensity training group, running economy was improved (P < 0.05), and the amount of pyruvate dehydrogenase (17%) and repeated sprint performance (33.44 ± 1.17 vs 32.81 ± 1.01 s) were enhanced (P < 0.05).

Conclusions: Inactivity slows VO(2) kinetics in association with a reduction of muscle oxidative capacity and repeated high-intensity running performance. In addition, intensified training of already well-trained athletes can improve mechanical efficiency and repeated sprint performance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Athletes
  • Athletic Performance / physiology*
  • Citrate (si)-Synthase / analysis
  • Humans
  • Male
  • Muscle Fibers, Slow-Twitch / metabolism
  • Muscle Fibers, Slow-Twitch / physiology
  • Oxygen Consumption / physiology*
  • Physical Endurance / physiology
  • Pyruvate Dehydrogenase Complex / analysis
  • Running / physiology
  • Soccer / physiology*
  • Young Adult

Substances

  • Pyruvate Dehydrogenase Complex
  • Citrate (si)-Synthase