HAART has succeeded in reducing morbidity and mortality rates in patients infected with HIV. However, a small amount of replication-competent HIV can persist during HAART, allowing the virus to re-emerge if therapy is ceased. One significant source of this persistent virus is a pool of long-lived, latently infected CD4(+) T cells. This article outlines what is known about how this reservoir is established and maintained, and describes the model systems that have provided insights into the molecular mechanisms governing HIV latency. The therapeutic approaches for eliminating latent cells that have been attempted are also discussed, including how improvements in understanding of these persistent HIV reservoirs are being used to develop enhanced methods for their depletion.