Molecular imaging with PET, and certainly integrated PET-CT, combining functional and anatomical imaging, has many potential advantages over anatomical imaging alone in the combined modality treatment of lung cancer. The aim of the current article is to review the available evidence regarding PET with FDG and other tracers in the combined modality treatment of locally advanced lung cancer. The following topics are addressed: tumor volume definition, outcome prediction and the added value of PET after therapy, and finally its clinical implications and future perspectives. The additional value of FDG-PET in defining the primary tumor volume has been established, mainly in regions with atelectasis or post-treatment effects. Selective nodal irradiation (SNI) of FDG-PET positive nodal stations is the preferred treatment in NSCLC, being safe and leading to decreased normal tissue exposure, providing opportunities for dose escalation. First results in SCLC show similar results. FDG-uptake on the pre-treatment PET scan is of prognostic value. Data on the value of pre-treatment FDG-uptake to predict response to combined modality treatment are conflicting, but the limited data regarding early metabolic response during treatment do show predictive value. The FDG response after radical treatment is of prognostic significance. FDG-PET in the follow-up has potential benefit in NSCLC, while data in SCLC are lacking. Radiotherapy boosting of radioresistant areas identified with FDG-PET is subject of current research. Tracers other than (18)FDG are promising for treatment response assessment and the visualization of intra-tumor heterogeneity, but more research is needed before they can be clinically implemented.
Copyright © 2011 Elsevier Ltd. All rights reserved.