Spectral-domain differential interference contrast microscopy

Opt Lett. 2011 Feb 15;36(4):430-2. doi: 10.1364/OL.36.000430.

Abstract

We present a fiber-optic low-coherence imaging technique, termed spectral-domain differential interference contrast microscopy (SD-DIC), for quantitative DIC imaging of both reflective surfaces and transparent biological specimens. SD-DIC combines the common-path nature of a Nomarski DIC interferometer with the high sensitivity of spectral-domain low-coherence interferometry to obtain high-resolution, quantitative measurements of optical pathlength gradients from a single point on the sample. Full-field imaging can be achieved by scanning the sample. A reflected-light SD-DIC system was demonstrated using a USAF resolution target as the phase object. Live cardiomyocytes were also imaged, achieving a resolution of 36 pm for pathlength gradient measurements. The dynamics of cardiomyocyte contraction were recorded with high sensitivity at selected sites on the cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Diagnostic Imaging*
  • Equipment Design
  • Interferometry
  • Light
  • Microscopy, Interference / instrumentation*
  • Myocytes, Cardiac / physiology
  • Rats
  • Rats, Sprague-Dawley