Early disruption of the actin cytoskeleton in cultured cerebellar granule neurons exposed to 3-morpholinosydnonimine-oxidative stress is linked to alterations of the cytosolic calcium concentration

Cell Calcium. 2011 Mar;49(3):174-83. doi: 10.1016/j.ceca.2011.01.009. Epub 2011 Feb 26.

Abstract

Cytoskeleton damage is a frequent feature in neuronal cell death and one of the early events in oxidant-induced cell injury. This work addresses whether actin cytoskeleton reorganization is an early event of SIN-1-induced extracellular nitrosative/oxidative stress in cultured cerebellar granule neurons (CGN). The actin polymerization state, i.e. the relative levels of G-/F-actin, was quantitatively assessed by the ratio of the fluorescence intensities of microscopy images obtained from CGN double-labelled with Alexa594-DNase-I (for actin monomers) and Bodipy-FL-phallacidin (for actin filaments). Exposure of CGN to a flux of peroxynitrite as low as 0.5-1μM/min during 30min (achieved with 0.1mM SIN-1) was found to promote alterations of the actin cytoskeleton dynamics as it increases the G-actin/F-actin ratio. Because L-type voltage-operated Ca(2+) channels (L-VOCC) are primary targets in CGN exposed to SIN-1, the possible role of Ca(2+) dynamics on the perturbation of the actin cytoskeleton was also assessed from the cytosolic Ca(2+) concentration response to the L-VOCC's agonist FPL-64176 and to the L-VOCC's blocker nifedipine. The results showed that SIN-1 induced changes in the actin polymerization state correlated with its ability to decrease Ca(2+) influx through L-VOCC. Combined analysis of cytosolic Ca(2+) concentration and G-actin/F-actin ratio alterations by SIN-1, cytochalasin D, latrunculin B and jasplakinolide support that disruption of the actin cytoskeleton is linked to cytosolic calcium concentration changes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / metabolism*
  • Animals
  • Calcium / metabolism*
  • Calcium Channel Agonists / pharmacology
  • Calcium Channels, L-Type / chemistry
  • Calcium Channels, L-Type / metabolism
  • Cells, Cultured
  • Cerebellum / cytology
  • Molsidomine / analogs & derivatives*
  • Molsidomine / pharmacology
  • Neurons / drug effects
  • Neurons / metabolism*
  • Nifedipine / pharmacology
  • Oxidative Stress / drug effects*
  • Peroxynitrous Acid / pharmacology
  • Pyrroles / pharmacology
  • Rats
  • Rats, Wistar

Substances

  • Calcium Channel Agonists
  • Calcium Channels, L-Type
  • Pyrroles
  • FPL 64176
  • Peroxynitrous Acid
  • linsidomine
  • Molsidomine
  • Nifedipine
  • Calcium