mRNA vaccines are potentially attractive alternatives to DNA vaccines more often discussed, as they are generally considered safer than their DNA counterparts. The major limitations on the potency of RNA vaccines are their instability and inability to spread in vivo. Virus-like particles (VLPs) based on the bacteriophage MS2 have demonstrated remarkably high stability and may provide an improved platform for RNA-based genetic vaccination. However, no in vivo study of an MS2 VLP-mediated RNA vaccine has been reported. Therefore, we developed a model vaccine wherein MS2 VLPs packaging HIV-1 gag mRNAs (1544 bases) were produced in Saccharomyces cerevisiae, and then, used to immunize BALB/c mice. Serological analyses showed that antigen-specific antibody responses were elicited by immunization. These findings suggest that MS2 VLPs can be used in the design and construction of novel and safe phage-based mRNA delivery vectors.
Copyright © 2011 Elsevier Inc. All rights reserved.