Background: Pancreatic cancer (PC) harbours an activated point mutation (Kras(G12D)) in the Kras proto-oncogene that has been demonstrated to promote the development of PC.
Methods: This study was designed to investigate the effect of the oncogenic Kras(G12D) allele on aggressiveness and metastatic potential of PC cells. We silenced the oncogenic Kras(G12D) allele expression in CD18/HPAF and ASPC1 cell lines by stable expression of shRNA specific to the Kras(G12D)allele.
Results: The Kras(G12D) knockdown cells exhibited a significant decrease in motility (P<0.0001), invasion (P<0.0001), anchorage-dependent (P<0.0001) and anchorage-independent growth (P<0.0001), proliferation (P<0.005) and an increase in cell doubling time (P<0.005) in vitro and a decrease in the incidence of metastases upon orthotopic implantation into nude mice. The knockdown of the Kras(G12D) allele led to a significant increase in the expression of E-cadherin (mRNA and protein) both in vitro and in vivo. This was associated with a decrease in the expression of phoshpo-ERK-1/2, NF-κB and MMP-9, and transcription factors such as δEF1, Snail and ETV4. Furthermore, the expression of several proteins involved in cell survival, invasion and metastasis was decreased in the Kras(G12D) knockdown cells.
Conclusions: The results of this study suggest that the Kras(G12D) allele promotes metastasis in PC cells partly through the downregulation of E-cadherin.