Sex-specific activation of cell death signalling pathways in cerebellar granule neurons exposed to oxygen glucose deprivation followed by reoxygenation

ASN Neuro. 2011 Apr 7;3(2):e00056. doi: 10.1042/AN20100032.

Abstract

Neuronal death pathways following hypoxia-ischaemia are sexually dimorphic, but the underlying mechanisms are unclear. We examined cell death mechanisms during OGD (oxygen-glucose deprivation) followed by Reox (reoxygenation) in segregated male (XY) and female (XX) mouse primary CGNs (cerebellar granule neurons) that are WT (wild-type) or Parp-1 [poly(ADP-ribose) polymerase 1] KO (knockout). Exposure of CGNs to OGD (1.5 h)/Reox (7 h) caused cell death in XY and XX neurons, but cell death during Reox was greater in XX neurons. ATP levels were significantly lower after OGD/Reox in WT-XX neurons than in XY neurons; this difference was eliminated in Parp-1 KO-XX neurons. AIF (apoptosis-inducing factor) was released from mitochondria and translocated to the nucleus by 1 h exclusively in WT-XY neurons. In contrast, there was a release of Cyt C (cytochrome C) from mitochondria in WT-XX and Parp-1 KO neurons of both sexes; delayed activation of caspase 3 was observed in the same three groups. Thus deletion of Parp-1 shunted cell death towards caspase 3-dependent apoptosis. Delayed activation of caspase 8 was also observed in all groups after OGD/Reox, but was much greater in XX neurons, and caspase 8 translocated to the nucleus in XX neurons only. Caspase 8 activation may contribute to increased XX neuronal death during Reox, via caspase 3 activation. Thus, OGD/Reox induces death of XY neurons via a PARP-1-AIF-dependent mechanism, but blockade of PARP-1-AIF pathway shifts neuronal death towards a caspase-dependent mechanism. In XX neurons, OGD/Reox caused prolonged depletion of ATP and delayed activation of caspase 8 and caspase 3, culminating in greater cell death during Reox.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Apoptosis Inducing Factor / metabolism
  • Caspase 3 / metabolism
  • Caspase 8 / metabolism
  • Cell Death / physiology*
  • Cerebellum / cytology
  • Female
  • Glucose / metabolism*
  • Hypoxia-Ischemia, Brain / metabolism*
  • Male
  • Mice
  • Mice, Knockout
  • Mitochondria / metabolism
  • Neurons / cytology
  • Neurons / physiology*
  • Oxygen / metabolism*
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases / genetics
  • Poly(ADP-ribose) Polymerases / metabolism
  • Sex Characteristics*
  • Signal Transduction / physiology*

Substances

  • Apoptosis Inducing Factor
  • Adenosine Triphosphate
  • Parp1 protein, mouse
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases
  • Caspase 3
  • Caspase 8
  • Glucose
  • Oxygen