The correlation between the thickness-dependent oxidation rate of ultrathin Al films on W(110) and the quantum-well states (QWS) resulting from electron confinement in the Al film has been explored by combined x-ray photoemission electron microscopy (XPEEM), low energy electron microscopy (LEEM), and first-principles calculations. Hybridization with substrate electronic states is observed to alter the film electronic structure, strongly modifying the electron density decay length in vacuum. The decay length, rather than the density of states at the Fermi energy, is found to dominate the observed reactivity trends.