Patient-specific computational haemodynamics: generation of structured and conformal hexahedral meshes from triangulated surfaces of vascular bifurcations

Comput Methods Biomech Biomed Engin. 2011 Sep;14(9):797-802. doi: 10.1080/10255842.2010.495066. Epub 2011 May 24.

Abstract

Measuring the blood flow is still limited by current imaging technologies and is generally overcome using computational fluid dynamics (CFD) which, because of the complex geometry of blood vessels, has widely relied on tetrahedral meshes. Hexahedral meshes offer more accurate results with lower-density meshes and faster computation as compared to tetrahedral meshes, but their use is limited by the far more complex mesh generation. We present a robust methodology for conformal and structured hexahedral mesh generation - applicable to complex arterial geometries as bifurcating vessels - starting from triangulated surfaces. Cutting planes are used to slice the lumen surface and to construct longitudinal Bezier splines. Afterwards, an isoparametric transformation is used to map a parametrically defined quadrilateral surface mesh into the vessel volume, resulting in stacks of sections which can then be used for sweeping. Being robust and open source based, this methodology may improve the current standard in patient-specific mesh generation and enhance the reliability of CFD to patient-specific haemodynamics.

MeSH terms

  • Blood Circulation*
  • Carotid Arteries / anatomy & histology*
  • Carotid Arteries / physiology
  • Computational Biology*
  • Hemodynamics*
  • Humans