Background: Agonist antibodies against CD137 (4-1BB) on T lymphocytes are used to increase host anti-tumor immunity, but often leading to severe liver injury in treated mice or in patients during clinical trials. Interleukin-6 (IL-6) has been reported to protect hepatocyte death, but the role of IL-6 in protecting chronic T cell-induced liver diseases is not clearly defined due to lack of relevant animal models. We aimed to define the role of IL-6 in CD8+ T cell-mediated liver injury induced by a CD137 agonistic mAb (clone 2A) in mice.
Methods/principal findings: We expressed IL-6 in the liver by hydrodynamic gene delivery in mice treated with 2A or control mAb and studied how IL-6 treatment affected host immunity and T cell-mediated liver injury. We found that ectopic IL-6 expression in the liver elevated intrahepatic leukocyte infiltration but prevented CD8+ T cell-mediated liver injury. In IL-6 treated mice, CD8+ T cells proliferation and IFN-γ expression were inhibited in the liver. We discovered that IL-6 increased accumulation of Gr-1+CD11b+ myeloid derived suppressor cells (MDSCs) in the liver and spleen. These MDSCs had the ability to inhibit T cells proliferation and activation. Finally, we showed that the MDSCs were sufficient and essential for IL-6-mediated protection of anti-CD137 mAb-induced liver injury.
Conclusions/significance: We concluded that IL-6 induced Gr-1+CD11b+ MDSCs in the liver to inhibit T cell-mediated liver injury. The findings have defined a novel mechanism of IL-6 in protecting liver from CD8+ T cell-mediated injury.