The aim of this study was to describe the characteristics of jump capacity in a group of secondary school students and to develop 2 specific equations-applied to boys and girls, respectively, to estimate the jump power of secondary school students. Four hundred and fifty-six boys (age, 14.1 ± 0.8 years; mass, 61.9 ± 15.7 kg; height, 1.64 ± 0.10 m) and 465 girls (age, 14.1 ± 0.9 years; mass, 55.1 ± 10.0 kg; height, 1.58 ± 0.07 m), all of them secondary school students, volunteered to participate in this study. They performed a vertical jump test (Abalakov) on a force platform, and jump height and peak power were measured. Most importantly, peak power was also estimated through a series of previously established power equations. For the purpose of establishing statistically significant differences, a p value ≤ 0.05 was fixed. The equations proposed by Canavan and Vesconvi, and Harman were the most precise with respect to actual power, reaching a percentage of 1.9-2.1 and 3.6-4.1%, respectively. The equations by Sayers and Lara showed a greater difference in percentage (9.9-12.4 and 22.4-24.2%, respectively) with that of actual power. Similar results were not obtained in other studies, which means that a specific equation will be required according to the characteristics of the assessed sample. Two equations specifically addressed to secondary school students will be established in this article: boys: ([61.8 jump height (cm)] + [37.1 body mass (kg)] - 1,941.6); girls: ([31 jump height (cm)] + [45 body mass (kg)] - 1,045.4). Crossvalidation tests that were done to prove the validity of said equations showed positive results. Practical applications: Those teachers who wish to estimate the jump power of their pupils can use these equations and thereby calculate jump power by the indirect method from jump height and body mass index, without any need to use any expensive tools.